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Abstract. A graph G is said to be determined by its spectrum if there does not
exist other non-isomorphic graph H such that H and G have the same spectrum. In
this paper, we give a complete spectral characterization of regular graphs which are
cographs, providing closed formulas for its Laplacian eigenvalues and we prove they
are determined by their spectrum.
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1. Introduction

Throughout this article, all graphs are assumed to be finite, undirected, and without
loops or multiple edges. We first set some notation and terminology. Let G be a
graph with vertex set V (G) and edge set E(G). For v ∈ V (G), denote by N(v) the
open neighborhood of v, that is, {w|{v, w} ∈ E} and by N [v] := N(v) ∪ {v} the
closed neighborhood of v. Two vertices u, v ∈ V (G) are duplicate if N(u) = N(v)
and coduplicate if N [u] = N [v]. If |V | = n, the adjacency matrix A = [aij] is the n× n
matrix of zeros and ones such that aij = 1 if and only if vi is adjacent to vj.

The degree sequence of a graph G of order n, is the sequence δ(v1), . . . , δ(vn), where
δ(vi) is the degree of vertex vi. Let δ(G) be the diagonal matrix of vertex degrees of
G. The Laplacian matrix of G is defined as L(G) = δ(G) − A(G). The A-eigenvalues
and L-eigenvalues of G are the respective eigenvalues of A(G) and L(G), denoted by
SpectA(G) = {λ1, . . . , λn} and SpectL(G) = {µn, . . . µ2, µ1 = 0}.

Two graphs are said to be Laplacian cospectral (for short, L-cospectral), if they share
the same Laplacian spectrum. A graph G is said to be determined by its Laplacian
spectrum (for short, L-DS) if any other non-isomorphic graph has a different Laplacian
spectrum.

The notion of a graph G to be DS is originally defined for the adjacency matrix of the
graph G, but a natural extension of the problem is to find families of graphs that are
determined by the spectrum in relation to other matrices. Finding families of non-DS
graphs is a related relevant problem and there are many constructions in the literature
[9, 10, 16, 20].

In this paper, we investigate the L-cospectrality in the class of regular graphs which
are cographs. It is well known that cograph can be represented by rooted tree, and a lot
of spectral properties about a cograph may be obtained from a tree that produces it,
(see, for example [5, 6, 11, 12, 19]). In this way, we use a linear algorithm that locates its
Laplacian eigenvalues for exploring spectral properties of this class of graphs. We give
a complete spectral characterization of regular graphs which are cographs, providing
closed formulas for its Laplacian eigenvalues and we prove they are L-DS.

Our paper is organized as follows. In Section 2, we provide definitions and known
results needed for the development of our paper. In Section 3, for a regular cograph,
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we provide closed formulas for its Laplacian eigenvalues. Finally, in the last section, we
prove that regular cographs are L-DS.

2. Preliminaries

2.1. Cographs and cotrees. In what follows, G denotes a graph with n vertices,
while that G its complement. As usual, Kn, nK1, Cn, Pn represent the complete graph,
the edgeless graph, the cycle graph and the path graph of order n, respectively. Now,
we recall the definitions of some operations with graphs that will be used. For this, let
G1 = (V1, E1) and G2 = (V2, E2) be vertex disjoint graphs:

• The union of graphs G1 and G2 is the graph G1∪G2 whose vertex set is V1∪V2

and whose edge set is E1 ∪ E2.
• The join of graphs G1 and G2 is the graph G1 ⊗G2 obtained from G1 ∪G2 by
joining every vertex of G1 with every vertex of G2.

If G1 and G2 are graphs on n1 and n2 vertices respectvely, with eigenvalues µn1(G1) ≥
. . . ≥ µ2(G1) ≥ µ1(G1) = 0 and µn2(G2) ≥ . . . ≥ µ2(G2) ≥ µ1(G2) = 0, respectively,
then the Laplacian eigenvalues of G1 ⊗ G2 are given by 0, µ2(G1) + n2, . . . , µn1(G1) +
n2, µ2(G2) + n1, . . . , µn2(G2) + n1, n1 + n2. We note that for any graph G on n vertices,
its largest Laplacian eigenvalue µn(G), satisfies µn(G) ≤ n, with equality holding if and
only if G is a join of two graphs. Finally, if µi(G) is a Laplacian eigenvalue of G on n
vertices then n− µi(G) is a Laplacian eigenvalue of G.

A cograph is a simple graph which contains no path on four vertices an induced
subgraph, namely it is a P4-free graph. An equivalent definition (see [7]) is that cographs
can be obtained recursively by using the graph operations of union and join. Other ways
to define cographs can be viewed in [2, 18, 13].

Each cograph can be represented by a tree, called a cotree [6]. A cotree TG of a
cograph G is a rooted tree in which any interior vertex w is either of ∪-type (corresponds
to union) or ⊗-type (corresponds to join). The leaves are typeless and represent the
vertices of the cograph G. An interior vertex is said to be terminal, if it has no interior
vertex as successor. We say that depth of the cotree is the number of edges of the
longest path from the root to a leaf. To build a cotree for a connected cograph, we
simply place a ⊗ at the tree’s root, placing ∪ on interior vertices with odd depth, and
placing ⊗ on interior vertices with even depth.
As an illustration, we give a simple example. The Figure 4 shows a cograph G and

its cotree TG with depth equals to 3.
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Figure 1. A cograph G = ((v1 ⊗ v2)∪ (v3 ⊗ v4))⊗ ((v5 ⊗ v6)∪ v7)) and
its cotree TG.
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2.2. Diagonalization Algorithm. An important tool presented in [13] was a linear
algorithm for constructing a diagonal matrix congruent to L(G) + xIn, where L(G) is
the Laplacian matrix of a cograph G, and x is an arbitrary scalar.

The algorithm’s input is the cotree TG and x. Each leaf vi, i = 1, . . . , n have a value
di that represents the diagonal element of L(G) + xIn. It initializes all entries with
δ(vi) + x, where δ(vi) denotes the degree of vertex vi. At each iteration, a pair {vk, vl}
of duplicate or coduplicate vertices with maximum depth is selected. Then they are
processed, that is, assignments are given to dk and dl, such that either one or both rows
(columns) are diagonalized. When a k row (column) corresponding to vertex vk has
been diagonalized then vk is removed from the TG, it means that dk has a permanent
final value. Then the algorithm moves to the cotree TG − vk. The algorithm is shown
in Figure 2.

INPUT: cotree TG, scalar x
OUTPUT: diagonal matrix D = [d1, d2, . . . , dn] congruent to L(G) + xIn

Algorithm Diagonal (TG, x)
initialize di := δ(vi) + x, for 1 ≤ i ≤ n
while TG has ≥ 2 leaves

select a pair (vk, vl) (co)duplicate of maximum depth with parent w
α← dk β ← dl
if w = ⊗

if α + β ̸= −2 //subcase 1a

dl ← αβ−1
α+β+2

; dk ← α + β + 2; TG = TG − vk
else if β = −1 //subcase 1b

dl ← −1 dk ← 0; TG = TG − vk
else //subcase 1c

dl ← −1 dk ← (1 + β)2; TG = TG − vk; TG = TG − vl
else if w = ∪

if α + β ̸= 0 //subcase 2a

dl ← αβ
α+β

; dk ← α + β; TG = TG − vk
else if β = 0 //subcase 2b

dl ← 0; dk ← 0; TG = TG − vk
else //subcase 2c

dl ← β; vk ← −β; TG = TG − vk; TG = TG − vl
end loop

Figure 2. Diagonalization algorithm

The next result from [13] will be used throughout the paper.

Theorem 1. Let G be a cograph and let (dv)v∈TG
be the sequence produced by Diagonal-

ize (TG,−x). Then the diagonal matrix D = diag(dv)v∈TG
is congruent to L(G) + xIn,

so that the number of (positive - negative - zero) entries in (dv)v∈TG
is equal to the

number eigenvalues of L(G) that are (greater than x - small than x - equal to x).

The following two lemmas show that if a vertex ⊗-type or ∪-type, in the cotree, have
leaves with the same value, then, we can use the following routines.
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Lemma 1. If v1, . . . , vm have parent w = ⊗, each with the same diagonal value y ̸= −1,
then the algorithm performs m−1 iterations of subcase 1a assigning, during iteration
j :

dk ←
j + 1

j
(y + 1) dl ←

y − (j − 1)

j + 1
(1)

Lemma 2. If v1, . . . , vm have parent w = ∪, each with the same diagonal value y ̸= 0,
then the algorithm performs m−1 iterations of subcase 2a assigning, during iteration
j :

dk ←
j + 1

j
y dl ←

y

j + 1
(2)

Lemma 3. Let G be a cograph with cotree TG. Let ti ≥ 2 be leaves with degree δ(vi) of
an interior vertex wi of TG. Then

i. δ(vi) is a Laplacian eigenvalue with multiplicity ti − 1, if wi = ∪-type.
ii. δ(vi) + 1 is a Laplacian eigenvalue with multiplicity ti − 1, if wi = ⊗-type.

Proof. Let ti ≥ 2 be leaves with degree δ(vi) of an interior vertex wi of TG. Initializing
the Diagonalization with x = −δ(vi) (respect. x = −δ(vi) − 1) for duplicate (respect.
coduplicate) vertices it is easy to see that the algorithm enters to the subcase 2b (re-
spect. subcase 1b) and assigns a permanent zero value. □

Lemma 4. Let G be a connected cograph with cotree TG. Then Diagonalization (TG,−x)
assigned a permanent value zero in the last iteration if and only if x = 0 and the
subcase 1a is executed.

Proof. Let G be a connected cograph with cotree TG. Let x = 0 be a Laplacian eigen-
value of G and consider the execution of Diagonalization (TG,−x). According Theorem
1, we must be a zero on the final diagonal. Doing a specious analysis on the algorithm
the permanent value zero can be given in the following situations: by subcase 1b, if
β = −1, by subcase 2b, if β = 0, and by subcase 1a, if α = 1/β.
Since G is connected, the subcase 2b can not be executed in the last iteration. Now,

if subcase 1b is executed in the last iteration, then the assignments given are dk = 0
and dl = −1. It means there is a Laplacian eigenvalue small than x = 0 according to
Theorem 1, what is a contradiction. Therefore, follows the value zero assigned in the
last iteration by subcase 1a. □

3. Regular graphs and cographs

In this section, we provide a complete spectral characterization of regular graphs
which are cographs, including closed formulas for its Laplacian eigenvalues.

3.1. Balanced cotrees. For positive integers a1, . . . , as−1, as, the balanced cotree
TG(a1, . . . , as−1, 0|0, . . . , 0, as) of depth s corresponding to cographG on n = a1 . . . as−1as
vertices has a vertex ⊗ at the root, this vertex has exactly a1 immediate ∪ interior ver-
tices. Each ∪ at level 1 has exactly a2 immediate ⊗ interior vertices, and so on. Notice
that, this cotree only has leaves at the last level. It means that, the vertices at level
s − 1 have as immediate leaves. So, at level i, the cotree has a1a2 · · · ai vertices ⊗ if i
is even and ∪ if i is odd, for 1 ≤ i ≤ s − 1. And, at the last level s, it has a1a2 · · · as
leaves. It is easy to check that cographs with balanced cotrees are regular graphs.

The Figure 3 shows the balanced cotree TG(2, 2, 0|0, 0, 2) with depth s = 3. For more
details on balanced cotrees see [3, 4]. The complete graphKn is a cograph with balanced
cotree T (0|n).
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Figure 3. TG(2, 2, 0|0, 0, 2).

The following result is due [8].

Lemma 5. Let G be a connected r-regular graph on n vertices for which the A-
eigenvalues are given by λ1 = r > λ2 ≥ . . . ≥ λn. Then the L-eigenvalues of G are
r − λn ≥ r − λn−1 ≥ . . . ≥ r − λ2 > r − λ1 = 0.

Definition 1. Let a = (a1, a2, . . . , an) be a fixed sequence of positive integers. We
define the following parameter

γn,l =

{
anan−1an−2 . . . al if 1 ≤ l ≤ n− 1

an if l = n.

The next result, −(xi
s)

m denotes the A-eigenvalue of a cograph G with multiplicity
m, produced by its cotree TG at level 1 ≤ i ≤ s − 1. For more details, see [4]. From
Lemma 5 follows:

Corollary 1. Let G be a r-regular cograph on n vertices having balanced cotree TG.
Then, the L-eigenvalues of G are given by

(i) {(r + xi
s)

a1...(ai−1) for 1 ≤ i ≤ s− 1, (r)a1...(as−1), n}, if s is even, where{
xi
s =

∑s−i
k=1 γs,i+k(−1)k if i is even,

xi
s =

∑s−i
k=1 γs,i+k(−1)k+1 if i is odd.

(ii) {(r + xi
s)

a1...(ai−1) for 1 ≤ i ≤ s− 1, (r + 1)a1...(as−1), n}, if s is odd, where{
xi
s =

∑s−i
k=1 γs,i+k(−1)k + 1 if i is even,

xi
s =

∑s−i
k=1 γs,i+k(−1)k+1 + 1 if i is odd.

The next result, presents an alternative representation of xi
s, given by Corollary 1,

for 1 ≤ i ≤ s− 1.

Lemma 6. Let G be a r-regular cograph on n vertices having balanced cotree TG. Then

(i) xs−1
s = −as + 1, if s is odd , and for j = 2, . . . , s− 1

xs−j
s = (−1)jasas−1 . . . as−(j−1) + xs−(j−1)

s .

(ii) xs−1
s = as + 1, if s is even , and for j = 2, . . . , s− 1

xs−j
s = (−1)j+1asas−1 . . . as−(j−1) + xs−(j−1)

s .

Proof. We will prove by induction on j. We suppose s is odd. Using Corollary 1, since
s− 1 is even, we have that

xs−1
s =

s−(s−1)∑
k=1

γs,s−1+k(−1)k + 1 = −as + 1.
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Applying Corollary 1 again, for i = s− 2, follows

xs−2
s =

2∑
k=1

γs,s−2+k(−1)k+2 + 1 = asas−1 + xs

xs−2
s = (−1)jasas−1 + xs−1

s

which proves the basis of our induction.
Now, we suppose that

xs−j
s = (−1)jas . . . as−(j−1) + xs−(j−1)

s

and we want to prove that

xs−(j+1)
s = (−1)j+1as . . . as−j + xs−j

s .

By Corollary 1, we have that

xs−(j+1)
s =

j+1∑
k=1

γs,s−(j+1)+k(−1)k+1 + 1

γs,s−j(−1)2 +
j+1∑
k=2

γs,s−(j+1)+k(−1)k+1 + 1

but, s and s− (j + 1) are odd numbers, then (j + 1) is an even number, therefore

xs−(j+1)
s = (−1)j+1as . . . as−j +

j+1∑
k=2

γs,s−(j+1)+k(−1)k+1 + 1.

Now, we want to show that

j+1∑
k=2

γs,s−(j+1)+k(−1)k+1 + 1 = xs−j
s (3)

Since s and j are odd numbers, we have that (s− j) is even, and

xs−j
s =

j∑
k=1

γs,s−j+k(−1)k + 1.

Performing the following change of variable p = k + 1, follows

xs−j
s =

j+1∑
p=2

γs,s−(j+1)+p(−1)p−1 + 1

=

j+1∑
p=2

γs,s−(j+1)+p(−1)p+1 + 1

which proves (3). Therefore

xs−(j+1)
s = (−1)j+1as . . . as−j + xs−j

s

as desired. □
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Figure 4. TG corresponding to 7-regular cograph

3.2. Non-balanced cotrees. It is known that cographs having balanced cotree corre-
sponds to r-regular graphs. However, not every r-regular cograph has balanced cotree.
For example, the cotree of Figure 4 corresponds to 7-regular cograph, but it is obvious
no balanced.

Let G be a cograph and TG its cotree. We say TG is a caterpillar if every interior
vertex on TG has exactly one interior vertex as an sucessor immediately. As illustration,
on the left of Figure 5 shows a caterpillar cotree TG.

t3
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∪

1 t4

. . .

⊗
t2

. . .
1

∪

⊗

1

t1

. . .

∪l − 2

⊗l − 1 ⊗

l

tl tl

∪1

⊗2

t2

⊗

t2

⊗
0

∪ ∪ 1

t1

2

t1

Figure 5. A caterpillar cotree and caterpillar having attached balanced cotrees

The following result presents the cotree’s representation correspondent to a r-regular
cograph.

Theorem 2. Let G be a r-regular cograph with cotree TG. If ti are leaves of an interior
vertex wi ∈ TG then wi is a terminal vertex. Furthermore, if G = Gn1 ⊗Gn2 , then TGn1

and TGn2
are either

(1) a balanced cotree;
(2) a caterpillar having attached balanced cotrees (see, on the right of Figure 5).

Proof. Let G be a r-regular cograph with cotree TG. If TG is a balanced cotree the result
holds. Now, we suppose that TG is not a balanced cotree and let wi be a non-terminal
vertex having ti leaves. If wi = ∪-type there is an interior vertex w′

i+1 = ⊗-type as
successor. If t′i+1 are leaves below to w′

i+1, we have the degree of t′i+1 are greater than
the degree of ti, since any leaf in TG which is adjacent to ti must be adjacent to t′i+1,
which is a contradiction. If wi = ⊗-type we can use a similar argument.
Now, we will prove the second statement. If TG is not a balanced cotree we have

terminal vertices in TG have leaves in distinct levels. Since any path of alternating
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interior vertices containing no interior vertices as successor does not correspond to
regular cograph, follows any interior vertex on the caterpillar of TG must has an interior
vertex as successor which is either a terminal vertex or a balanced cotrees. □

Theorem 3. Let G be a cograph on n vertices with cotree TG. Let w be an interior vertex
having t leaves and immediate sucessors {w1, . . . , wj}, where each wi has ti leaves below.
If there is t′ leaves which are adjacent to w, then

(i) t′ is a Laplacian eigenvalue with multiplicity t+ j − 1, if w = ∪-type.
(ii) t+t′+

∑j
i=1 ti is a Laplacian eigenvalue with multiplicity t+j−1, if w = ⊗-type.

Proof. For item [(i)], let ∪-type be an interior vertex having t leaves and immediate
sucessors {w1, . . . , wj} where each wi has ti leaves below. If there is t

′ leaves which are
adjacent to ∪-type, we can say the t leaves have degree t′, while the leaves below of
each wi have degree δ(vi) + t′. To justify the t+ j − 1 permanent zero values, we note
to execute Diagonalization (TG, x = −t′) with initial value δ(vi) + t′ is equivalent to
execute Diagonalization (TG, x = 0) with value initial δ(vi). By Lemma 4, follows t+ j
zeros are assigned for the duplicate vertices of w. Applying subcase 2a , follows that
t+ j − 1 permanent zeros values are assigned.

Now, the second item [(ii)].We assumeG has order n, such that n = p+t′+t+
∑j

i=1 ti.

Consider the complement graph G and its cotree TG. It is easy to see that t +
∑j

i=1 ti
vertices in TG are adjacent to p leaves. By item [(i)] we have p is a Laplacian eigenvalue

of G with multiplicity t + j − 1. Therefore n − p = t + t′ +
∑j

i=1 ti is a Laplacian
eigenvalue of G, as desired. □

Theorem 4. Let G be a r-regular cograph on n vertices having non-balanced cotree
TG. If TG1 , . . . , TGk

are the cotrees of degrees ri (i = 1, . . . , k) attached in a caterpillar
{w1, w2, . . . , wm} of TG. Then the L-eigenvalues non zero of G are given by

(i) L-eigenvalues of Corollary 1 plus ti, if TGi
is a balanced cotree adjacent to ti

leaves.
(ii) ri + ti + 1 and ri + ti − (bi − 1) with multiplicity bi − 1 and the number of TGi

minus one, if TGi
is a terminal vertex of ⊗-type having bi leaves and adjacent

to ti leaves.
(iii) ri + ti and ri + ti + bi with multiplicity bi− 1 and the number of TGi

minus one,
if TGi

is a terminal vertex of ∪-type having bi leaves and adjacent to ti leaves.
(iv) ni + nj + ti, if wi (i = 1, . . . ,m) is of ⊗-type having cotrees of order ni and nj

attached and adjacent to ti leaves.
(v) ti, if wi (i = 1, . . . ,m) is of ∪-type having cotrees attached and adjacent to ti

leaves.

Proof. Let G be a r-regular cograph having non-balanced cotree TG with TG1 , . . . , TGk

cotrees of degrees ri (i = 1, . . . , k) attached in a caterpillar {w1, w2, . . . , wm} of TG.
If TGi

is a balanced cotree attached in an interior vertex wi ∈ TG of degree ri and
adjacent to ti leaves, we note that Diagonalization (TG, x = −ti) with δi = ri + ti is
equivalent to execute Diagonalization(TGi

, x = 0). Since 0 is a Laplacian eigenvalue
of TGi

follows ti is a Laplacian eigenvalue of TG. Repeating this procedure for the
remaining Laplacian eigenvalues of TGi

, by taking Diagonalization (TG, x = −ti − xi
s)

and δi = ri + ti, follows the item (i).
Now, let TGi

and TGj
be cotrees attached in an interior vertex wi of a caterpillar

of TG, where TGi
is a terminal vertex. If TGi

is a terminal vertex of ⊗-type (respect.
∪-type) of degree ri having bi leaves and adjacent to ti leaves, its Laplacian eigenvalue



REGULAR COGRAPH IS DETERMINED BY ITS SPECTRUM 9

is ri + ti + 1 (respect. ri + ti) with multiplicity bi − 1, according to Lemma 1. For the
remaining eigenvalues, we consider two cases:
Case 1: If wi = ∪. According to Lemma 4, both cotrees TGi

and TGj
have assigned a

value zero in the last iteration. Since TGi
is terminal vertex with bi leaves and adjacent

to ti leaves, by Lemma 2, follows ri+ ti+x = bi−1 and therefore −x = ri+ ti− (bi−1)
is a Laplacian eigenvalue common of TGi

and TGj
.

Case 2: If wi = ⊗. We have cotrees TGi
and TGj

have received values −1 in the last
iteration. Since TGi

is terminal vertex with bi leaves and adjacent to ti leaves, by Lemma
3, follows ri + ti + x = −bi and therefore −x = ri + ti + bi is a Laplacian eigenvalue
common of TGi

and TGj
. This proof the items (ii) and (iii).

The remaining items follow directly by Theorem 3. □

Example 1. We consider the 7-regular cograph with non-balanced cotree TG of Figure
4 with SpectL(G) = {12, 9, 82, 76, 5, 0}.

We have TG1 and TG2 are terminal vertices and TG3 is a balanced cotree attached in
the caterpillar {w1, w2} of TG.

For cotree TG1 of ∪-type of degree r1 = 0 with b1 = 5 and t1 = 7, follows by item
(iii), 7 is a Laplacian eigenvalue with multiplicity 4, while 12 is a Laplacian eigenvalue
with multiplicity 0.

For cotree TG2 of ⊗-type of degree r2 = 2 with b2 = 3 and t2 = 5, follows by item (ii),
8 is a Laplacian eigenvalue with multiplicity 2, while 9 is a Laplacian eigenvalue with
multiplicity 0.

For balanced cotree TG3 of degree r3 = 2 and t3 = 5, follows by item (i) 4+5, 2+5, 2+5
are Laplacian eigenvalues.

Finally, since TG has a caterpillar of depth 2, by items (iv) and (v), we have 3+4+5
and 5 are Laplacian eigenvalues.

4. Regular cographs are L-DS

In this section, we prove that regular cographs are L-DS. We first prove no two
r-regular cographs are L-cospectral.

Lemma 7. Let G and H be two r-regular cographs on n vertices having balanced cotrees

TG(a1, a2. . . . , as−1, 0|0, . . . , as) (4)

and
TH(b1, b2, . . . , bs′−1, 0|0, . . . , bs′) (5)

respectively. If G and H are L-cospectral then s = s′.

Proof. Let G and H be two r-regular cographs on n vertices having balanced cotrees
given by equations (4) and (5), respectively. It is sufficient to show that each level of
cotree TG produces a distinct Laplacian eigenvalue.

Suppose that x
s−(i+p)
s = xs−i

s . By Lemma 6, we have

(−1)i+pas . . . as−(i+p−1) + . . .+ (−1)i+1as . . . as−i = 0.

Dividing the last equation by (−1)i+1as . . . as−i, we have that

(−1)i+p

(−1)i+1
as−(i+1) . . . as−(i+p−1) + . . .+

(−1)i+2

(−1)i+2
as−(i+1) + 1 = 0.

The last equation implies

(−1)p−1as−(i+1) . . . as−(i+p−1) + . . .+ (−1)2as−(i+1) . . . as−(i+1) = −1.
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Since as−(i+1) is a common term of equation above, we have

as−(i+1) · ((−1)p−1as−(i+2) . . . as−(i+p−1) + . . .+ (−1)2as−(i+2) + 1) = −1 (6)

The equation (6) means we have a product of two integers numbers equal to −1. It
implies that as−(i+1) = 1, what is a contradiction, since ak ≥ 2 for any k. □

Theorem 5. Let G and H be two r-regular cographs on n vertices having balanced
cotrees TG and TH , respectively. If G and H are L-cospectral graphs then G ∼= H.

Proof. Let G and H be two r-regular cographs on n vertices having balanced cotrees
TG(a1, . . . , as−1, 0|0, . . . , as) and TH(b1, . . . , bs−1, 0|0, . . . , bs). We claim that ai = bi, for
1 ≤ i ≤ s. We proceed by induction on s.

For s = 1, since their complements G and H are also L-cospectral graphs, implies
that number of components of G and H is the same. Therefore a1 = b1.

Now, we assume that for any two r-regular cograph H with balanced cotree TH

having the same Laplacian spectrum of a r-regular cograph G with balanced cotree
TG with depth less than s are isomorphic. Let G and H be a r-regular cographs on n
vertices having balanced cotrees TG and TH with depth s. We note the complements G
and H must be regular with same number of components, follows each component of
G with a2 . . . as vertices and each component of H with b2 . . . bs vertices have the same
degree and same number of vertices. Since each component corresponds to balanced
cotree with depth less than s, by induction follows they are isomorphic. Therefore, then
G ∼= H. □

For the next technical result, Gt denotes a graph on t vertices.

Lemma 8. Let G and H be two L-cospectral cographs on n vertices given by

G = (Gt1 ∪Gt2 ∪ . . . ∪Gtr)⊗Gn2 (7)

H = (Ht′1
∪Ht′2

∪ . . . ∪Ht′s)⊗Hn′
2

(8)

with n2 <
∑r

i=1 ti and n′
2 <

∑r
i=1 t

′
i. Then

(i) n2 = n′
2 and r = s.

(ii)
∑r

i=1 ti =
∑r

i=1 t
′
i

(iii) ti = t′i for i = 1, . . . , r.

Proof. Let G and H be two L-cospectral cographs on n vertices given by equations
(7) and (8). Verifying the item (i). Since the second smallest Laplacian eigenvalue of
a cograph corresponds to its vertex connectivity (see [1]) follows µ2(G) = n2 = n′

2 =
µ2(H). To verify the second equality, we note n2 is a Laplacian eigenvalue of G and H.
Taking into account its multiplicity is equal to the number of componentes minus one
on the left of equations (7) and (8), we have r = s. The item (ii) follows from item (i).

For verifying the item (iii) we consider the partial cotrees TG and TH at level three.
By Theorem 3 (item (ii)), we have the following Laplacian eigenvalues:

t1 + n2, . . . , tr + n2, t
′
1 + n2, . . . , t

′
r + n2 (9)

Since these are the maximum values obtained by an interior vertex wi = ⊗-type in TG

(respect. w′
i = ⊗type in TH) except to the cotree’s root, by (9) we have ti = t′i, for

i = 1, . . . , r, as desired. □

Theorem 6. No two r-regular cographs are L-cospectral.
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Proof. Let G and H be two r-regular cographs on n vertices which are L-cospectral
with cotrees TG and TH , respectively. By Theorem 5, it is sufficient to verify the case
of both cotrees TG and TH are non-balanced cotrees.

Assuming that G and H are connected graphs, we have

G = (G∑
ti ∪Gt2)⊗Gt1 (10)

and
H = (H∑

t′i
∪Ht′2

)⊗Ht′1
(11)

with partial cotrees illustrated in the Figure 6. By Lemma 8, t1 = t′1, t2 = t′2 and∑
ti =

∑
t′i. Let’s denote by TG(t1) and TH(t1) the balanced cotrees attached in the

cotree’s root of TG and TH , respectively. We claim TG(t1) ∼= TH(t1).

⊗ t2

t3

∪ t1 ∪ t′1

⊗ t′2⊗

⊗ t′3

⊗ TG ⊗ TH

Figure 6. The partial cotrees TG and TH .

If TG(t1) and TH(t1) are t1K1 we are done. Now, we assume the cotrees have depth
greater than one and a1a2 . . . as = b1b2 . . . bs = t1 leaves. By Theorem 3, n − t1 is a
common Laplacian eigenvalue of G and H with multiplicity a1−1 and b1−1. Therefore,
thus a1 = b1. For the next level, we have n − t1 + (a2 . . . as) is a common Laplacian
eigenvalue with multiplicity a2 − 1 and b2 − 1, which implies that a2 = b2. Repeating
this procedure so on we have TG(t1) ∼= TH(t1).
From this, follows that G∑

ti ∪ Gt2 and H∑
ti ∪ Ht2 are L-cospectral cographs. By

similar argument, we prove that Gt2
∼= Ht2 . Continuing this process, we will achieve

either two balanced cotrees or a disjoint union of balanced cotrees having same order
and degree. By Theorem 5, follows the result as desired. □

Lemma 9. Let Gn1 and Gn2 be two graphs on n1 and n2 vertices, respectively, with
n1 < n2. If Gn2 is not a connected graph then Gn1⊗Gn2 has n1 as Laplacian eigenvalue
with multiplicity equals to the number of components of Gn2 minus one.

Proof. Let Gn1 ⊗Gn2 be a graph obtained from the join of Gn1 and Gn2 with n1 < n2.
Since Gn2 is not a connected graph, we have n1 is a Laplacian eigenvalue of Gn1 ⊗Gn2 .
So, there are two ways to obtain n1 :

• adding n1 with zeros (number of components of Gn2)
• adding n1 − n2 with n2.

Taking into account that n1 < n2, follows the multiplicity of n1 corresponds to the
number of components of Gn2 minus one, as desired. □

Theorem 7. Let G be a r-regular cograph of order n. If H is a r-regular graph on n
vertices having the same Laplacian spectrum of G then H is a cograph.
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Proof. We proceed by induction on r. If r = 0 we have H is nK1. If r = 1 we have H is
a disjoint union of copies of K2. We suppose that any graph L-cospectral with G having
degree less than r must be a cograph too. Now, let H be a r-regular graph having the
same Laplacian spectrum with G. We consider the following cases.

Case 1: G and H are connected.
Since their complements graphs G and H also are L-cospectral and have degree less

than r by induction follows the result.
Case 2: G and H are disconnected. Let G = Gn1 ∪Gn2 and H = Hn1 ∪Hn2 be two

L-cospectral graphs. We suppose that G is a cograph and H is not a cograph. Then,
we consider their complements

G = Gn1 ⊗Gn2 H = Hn1 ⊗Hn2 (12)

Since H is a join and it is not a cograph, we can assume that the component Hn2

has P4 as an induced subgraph and consider two subcases:
Subcase 2.1: n1 < n2.

Fact 1. The multiplicity of Laplacian eigenvalue n1 in G (resp. H) is equal to the
number of components of Gn2 (resp. Hn2) minus one.

Since n1 < n2, this fact follows directly by Lemma 9.

Fact 2. Hn2 is not a join.

Suppose that Hn2 is a join. Since its complement is a disconnected graph then one
of the components of Hn2 has P4. By other hand each component of Hn2 has degree
less than r and this contradicts the induction hypothesis.

Fact 3. The multiplicity of n1 in H differs from the multiplicity of n1 in G.

Since Hn2 is not a join then its complement Hn2 is connected too. So, by Fact 1 we
are done.

Subcase 2.2: n1 ≥ n2.
We consider the L-cospectral graphs given by equation (12).

Fact 4. Gn1
∼= Hn1 .

Since Gn1 and Hn1 are (r − n2)-regular cographs, we have their cotrees either cor-
respond to disjoint union of balanced cotrees or non-balanced cotrees. Using a similar
argument of the proof of Theorem 6, we have that TGn1

∼= THn1
.

Fact 5. Gn2 and Hn2 are L-cospectral graphs.

Since the graphs given by equation (12) are L-cospectral by Fact 4 follows the result.
The Fact 5 implies that Gn2 and Hn2 are also L-cospectral graphs. By other hand

Gn2 and Hn2 are regular graphs with degree less than r. Since Hn2 has P4 as an induced
subgraph this contradicts the induction hypothesis. □

Corollary 2. Every r-regular cograph is determined by its Laplacian spectrum.

5. Acknowledgements

This work was part of the Post-Doctoral studies of Fernando C. Tura, while vis-
iting Georgia State University, on leave from UFSM and supported by CNPq Grant
200716/2022-0. Luis Emilio Allem is partially supported by grant FAPERGS(Proc.
21/2551-0002053-9) and Guantao Chen acknowledges partial support of NSF grant
DMS-2154331.



REGULAR COGRAPH IS DETERMINED BY ITS SPECTRUM 13

References

[1] N. M.M. Abreu, Old and new results on algebraic connectivity of graphs, Linear Algebra and its
Applications 423 (2007) 53–73.

[2] T. Abrishami, A combinatorial analysis of the eigenvalues of the lapla-
cian matrices of cographs, Johns Hopkins University, Master’s thesis (2019),
http://jscholarship.library.jhu.edu/bitstream/handle/1774.2/61684/ABRISHAMI-THESIS-
2019.pdf

[3] L. E. Allem, F. C. Tura, Multiplicity of eigenvalues of cographs, Discrete Applied Mathematics
247 (2018) 43–52.

[4] L. E. Allem, F. C. Tura, Integral cographs, Discrete Applied Mathematics 283 (2020) 153–167.
[5] R.B. Bapat, A.K. Lal, S. Pati, Laplacian spectrum of weakly quasi-threshold graphs, Graphs

Combin. 24 (2008) 273–290.
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